Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(12): 2649-2659, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-36132283

RESUMO

Magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 biosynthesise chains of cube-octahedral magnetosomes, which are 40 nm magnetite high quality (Fe3O4) nanoparticles. The magnetic properties of these crystalline magnetite nanoparticles, which can be modified by the addition of other elements into the magnetosome structure (doping), are of prime interest in a plethora of applications, those related to cancer therapy being some of the most promising ones. Although previous studies have focused on transition metal elements, rare earth (RE) elements are very interesting as doping agents, both from a fundamental point of view (e.g. significant differences in ionic sizes) and for the potential applications, especially in biomedicine (e.g. magnetic resonance imaging and luminescence). In this work, we have investigated the impact of Gd and Tb on the magnetic properties of magnetosomes by using different complementary techniques. X-ray diffraction, transmission electron microscopy, and X-ray absorption near edge spectroscopy analyses have revealed that a small amount of RE ions, ∼3-4%, incorporate into the Fe3O4 structure as Gd3+ and Tb3+ ions. The experimental magnetic characterisation has shown a clear Verwey transition for the RE-doped bacteria, located at T ∼ 100 K, which is slightly below the one corresponding to the undoped ones (106 K). However, we report a decrease in the coercivity and remanence of the RE-doped bacteria. Simulations based on the Stoner-Wohlfarth model have allowed us to associate these changes in the magnetic response with a reduction of the magnetocrystalline (K C) and, especially, the uniaxial (K uni) anisotropies below the Verwey transition. In this way, K uni reaches a value of 23 and 26 kJ m-3 for the Gd- and Tb-doped bacteria, respectively, whilst a value of 37 kJ m-3 is obtained for the undoped bacteria.

3.
Sci Rep ; 10(1): 11430, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651449

RESUMO

Magnetotactic bacteria are aquatic microorganisms with the ability to biomineralise membrane-enclosed magnetic nanoparticles, called magnetosomes. These magnetosomes are arranged into a chain that behaves as a magnetic compass, allowing the bacteria to align in and navigate along the Earth's magnetic field lines. According to the magneto-aerotactic hypothesis, the purpose of producing magnetosomes is to provide the bacteria with a more efficient movement within the stratified water column, in search of the optimal positions that satisfy their nutritional requirements. However, magnetosomes could have other physiological roles, as proposed in this work. Here we analyse the role of magnetosomes in the tolerance of Magnetospirillum gryphiswaldense MSR-1 to transition metals (Co, Mn, Ni, Zn, Cu). By exposing bacterial populations with and without magnetosomes to increasing concentrations of metals in the growth medium, we observe that the tolerance is significantly higher when bacteria have magnetosomes. The resistance mechanisms triggered in magnetosome-bearing bacteria under metal stress have been investigated by means of x-ray absorption near edge spectroscopy (XANES). XANES experiments were performed both on magnetosomes isolated from the bacteria and on the whole bacteria, aimed to assess whether bacteria use magnetosomes as metal storages, or whether they incorporate the excess metal in other cell compartments. Our findings reveal that the tolerance mechanisms are metal-specific: Mn, Zn and Cu are incorporated in both the magnetosomes and other cell compartments; Co is only incorporated in the magnetosomes, and Ni is incorporated in other cell compartments. In the case of Co, Zn and Mn, the metal is integrated in the magnetosome magnetite mineral core.


Assuntos
Óxido Ferroso-Férrico/química , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/química , Manganês/química , Metais/química , Nanopartículas/química , Níquel/química , Estresse Oxidativo , Síncrotrons , Zinco/química
4.
Nanoscale ; 10(16): 7407-7419, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29557439

RESUMO

Magnetospirillum gryphiswaldense is a microorganism with the ability to biomineralize magnetite nanoparticles, called magnetosomes, and arrange them into a chain that behaves like a magnetic compass. Rather than straight lines, magnetosome chains are slightly bent, as evidenced by electron cryotomography. Our experimental and theoretical results suggest that due to the competition between the magnetocrystalline and shape anisotropies, the effective magnetic moment of individual magnetosomes is tilted out of the [111] crystallographic easy axis of magnetite. This tilt does not affect the direction of the chain net magnetic moment, which remains along the [111] axis, but explains the arrangement of magnetosomes in helical-like shaped chains. Indeed, we demonstrate that the chain shape can be reproduced by considering an interplay between the magnetic dipolar interactions between magnetosomes, ruled by the orientation of the magnetosome magnetic moment, and a lipid/protein-based mechanism, modeled as an elastic recovery force exerted on the magnetosomes.

5.
Biochim Biophys Acta Gen Subj ; 1861(6): 1507-1514, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28093197

RESUMO

BACKGROUND: The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions. METHODS: We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure. RESULTS: When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry. CONCLUSIONS: Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase. GENERAL SIGNIFICANCE: The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Assuntos
Magnetossomos/metabolismo , Magnetospirillum/crescimento & desenvolvimento , Magnetospirillum/metabolismo , Citometria de Fluxo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/química , Magnetossomos/ultraestrutura , Magnetospirillum/ultraestrutura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Tamanho da Partícula , Fatores de Tempo , Espectroscopia por Absorção de Raios X
6.
Faraday Discuss ; 191: 177-188, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27438136

RESUMO

Magnetic nanoparticles (MNPs) are widely investigated due to their potential use in various applications, ranging from electronics to biomedical devices. The magnetic properties of MNPs are strongly dependent on their size and shape (i.e., morphology), thus appropriate tools to investigate their morphology are fundamental to understand the physics of these systems. Recently a new approach to study nanoparticle morphology by Transmission Electron Microscopy (TEM) analysis has been proposed, introducing the so-called Aspect Maps (AMs). In this paper, a further evolution of the AM method is presented, allowing determination of the nanoparticles' 3D shape by TEM image. As a case study, this paper will focus on magnetite nanoparticles (Fe3O4), with a mean size of ∼45 nm extracted from Magnetospirillum gryphiswaldense magnetostatic bacteria (MTB). The proposed approach gives a complete description of the nanoparticles' morphology, allowing estimation of an average geometrical size and shape. In addition, preliminary investigation of the magnetic properties of MTB nanoparticles was performed, giving some insight into interparticle interactions and on the reversal mechanism of the magnetization.


Assuntos
Nanopartículas de Magnetita/análise , Magnetospirillum , Microscopia Eletrônica de Transmissão
7.
Nanoscale ; 8(2): 1088-99, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26666195

RESUMO

It is generally accepted that the mineral core synthesized by ferritin-like proteins consists of a ferric oxy-hydroxide mineral similar to ferrihydrite in the case of horse spleen ferritin (HoSF) and an oxy-hydroxide-phosphate phase in plant and prokaryotic ferritins. The structure reflects a dynamic process of deposition and dissolution, influenced by different biological, chemical and physical variables. In this work we shed light on this matter by combining a structural (High Resolution Transmission Electron Microscopy (HRTEM) and Fe K-edge X-ray Absorption Spectroscopy (XAS)) and a magnetic study of the mineral core biomineralized by horse spleen ferritin (HoSF) and three prokaryotic ferritin-like proteins: bacterial ferritin (FtnA) and bacterioferritin (Bfr) from Escherichia coli and archaeal ferritin (PfFtn) from Pyrococcus furiosus. The prokaryotic ferritin-like proteins have been studied under native conditions and inside the cells for the sake of preserving their natural attributes. They share with HoSF a nanocrystalline structure rather than an amorphous one as has been frequently reported. However, the presence of phosphorus changes drastically the short-range order and magnetic response of the prokaryotic cores with respect to HoSF. The superparamagnetism observed in HoSF is absent in the prokaryotic proteins, which show a pure atomic-like paramagnetic behaviour attributed to phosphorus breaking the Fe-Fe exchange interaction.


Assuntos
Ferritinas/química , Magnetismo , Nanotecnologia/métodos , Animais , Proteínas de Bactérias/química , Grupo dos Citocromos b/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Cavalos , Hidróxidos/química , Ferro/química , Microscopia Eletrônica de Transmissão , Nanopartículas , Fósforo/química , Pyrococcus furiosus/química , Proteínas Recombinantes/química , Espectrofotometria , Baço/química
8.
J Phys Condens Matter ; 27(49): 496002, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26593408

RESUMO

The structural state and static and dynamic magnetic properties of TbCu2 nanoparticles are reported to be produced by mechanical milling under inert atmosphere. The randomly dispersed nanoparticles as detected by TEM retain the bulk symmetry with an orthorhombic Imma lattice and Tb and Cu in the 4e and 8h positions, respectively. Rietveld refinements confirm that the milling produces a controlled reduction of particle sizes reaching ≃6 nm and an increase of the microstrain up to ≃0.6%. The electrical resistivity indicates a metallic behavior and the presence of a magnetic contribution to the electronic scattering which decreases with milling times. The dc-susceptibility shows a reduction of the Néel transition (from 49 K to 43 K) and a progressive increase of a peak (from 9 K to 15 K) in the zero-field-cooled magnetization with size reduction. The exchange anisotropy is very weak (a bias field of ≃30 Oe) and is due to the presence of a disordered (thin) shell coupled to the antiferromagnetic core. The dynamic susceptibility evidences a critical slowing down in the spin-disordered state for the lowest temperature peak associated with a spin glass-like freezing with a tendency of zv and ß exponents to increase when the size becomes 6 nm (zv ≃ 6.6 and ß ≃ 0.85). A Rietveld analysis of the neutron diffraction patterns 1.8 ≤ T ≤ 60 K, including the magnetic structure determination, reveals that there is a reduction of the expected moment (≃80%), which must be connected to the presence of the disordered particle shell. The core magnetic structure retains the bulk antiferromagnetic arrangement. The overall interpretation is based on a superantiferromagnetic behavior which at low temperatures coexists with a canting of surface moments and a mismatch of the antiferromagnetic sublattices of the nanoparticles. We propose a novel magnetic phase diagram where changes are provoked by a combination of the decrease of size and the increase of microstrain.

9.
Nanoscale ; 6(1): 457-65, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24217131

RESUMO

The possibility of tuning the magnetic behaviour of nanostructured 3d transition metal oxides has opened up the path for extensive research activity in the nanoscale world. In this work we report on how the antiferromagnetism of a bulk material can be broken when reducing its size under a given threshold. We combined X-ray diffraction, high-resolution transmission electron microscopy, extended X-ray absorption fine structure and magnetic measurements in order to describe the influence of the microstructure and morphology on the magnetic behaviour of NiO nanoparticles (NPs) with sizes ranging from 2.5 to 9 nm. The present findings reveal that size effects induce surface spin frustration which competes with the expected antiferromagnetic (AFM) order, typical of bulk NiO, giving rise to a threshold size for the AFM phase to nucleate. Ni(2+) magnetic moments in 2.5 nm NPs seem to be in a spin glass (SG) state, whereas larger NPs are formed by an uncompensated AFM core with a net magnetic moment surrounded by a SG shell. The coupling at the core-shell interface leads to an exchange bias effect manifested at low temperature as horizontal shifts of the hysteresis loop (~1 kOe) and a coercivity enhancement (~0.2 kOe).

10.
J Phys Condens Matter ; 25(27): 276001, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23765439

RESUMO

Nanogranular thin films of Fe7Au93, Fe7Ag93 and Fe9Cu91 have been sputtered onto Si(100) substrates with the aim of studying the magnetic interactions. X-ray diffraction shows a major noble metal matrix with broad peaks stemming from (111) textured fcc-Au, Ag and Cu. The noble metal forms a nanogranular environment, as confirmed by transmission electron microscopy, with mean particle sizes below 10 nm. The high magnetoresistance (>6%) reveals the existence of Fe nanoparticles. X-ray absorption near edge spectroscopy confirms the presence of a bcc-Fe atom arrangement and some dissolved Fe atoms in the matrix, and XMCD shows the polarization of Au by the Fe nanoparticles. DC-magnetization displays a field-dependent irreversibility produced by the freezing of magnetic nanoparticles into a superspin-glass state. The hysteresis loops remain unsaturated at 5 K and 45 kOe. The coercivity displays a sharp temperature decrease towards a minimum below 50 K, levelling off at higher values, reaching Hc = 200 Oe at 300 K. Annealing of FeAu results in a double-peak zero field cooled magnetization and a slight decrease of the coercivity. The interpretation of the results supports the presence of Fe nanoparticles embedded in the major noble matrix, with some diluted Fe atoms/clusters.


Assuntos
Cobre/química , Ouro/química , Compostos de Ferro/química , Magnetismo , Nanopartículas Metálicas/química , Prata/química , Microscopia Eletrônica de Transmissão , Nanotecnologia , Difração de Raios X
11.
J Nanosci Nanotechnol ; 12(9): 7473-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035498

RESUMO

Fe(x)Ag(100-x) granular thin films, 25 < or = x < or = 40, have been prepared by DC-Magnetron sputtering deposition. These samples are composed of small Fe nanoparticles (2.5-3 nm) embedded in an Ag matrix, and their size remains nearly constant with increasing Fe content. A crossover in the collective magnetic behaviour of the samples near x = 35, had been previously reported for these samples. In this article, we show that the transport and magnetotransport properties are clearly correlated with these magnetic behaviours, and that the resistivity, the magnetoresistance and the Hall resistivity depend on the nature of the most relevant interactions, dipolar or direct exchange, as a function of the thermal evolution and the Fe content.

12.
J Nanosci Nanotechnol ; 12(3): 1843-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22754989

RESUMO

The structural and magnetic properties of a collection of nanoparticles coated by Poly(methyl methacrylate) through a wet chemical synthesis have been investigated. The particles display either an amorphous (M = Fe, Co) M-B arrangement or a mixed structure bcc-Fe and fcc-Co + amorphous M-B. Both show the presence of a metal oxi-hydroxide formed in aqueous reduction. The organic coating facilitates technological handling. The cost-effective synthesis involves a reduction in a Poly(methyl methacrylate) aqueous solution of iron(II) or cobalt(II) sulphates (< 0.5 M) by sodium borohydride (< 0.5 M). The particles present an oxidized component, as deduced from X-ray diffraction, Mössbauer and Fe- and Co K-edge X-ray absorption spectroscopy and electron microscopy. For the ferrous alloys, this Fe-oxide is alpha-goethite, favoured by the aqueous solution. The Poly(methyl methacrylate) coating is confirmed by Fourier transform infrared spectroscopy. In pure amorphous core alloys there is a drastic change of the coercivity from bulk to around 30 Oe in the nanoparticles. The mixed structured alloys also lie in the soft magnetic regime. Magnetisation values at room temperature range around 100 emu/g. The coercivity stems from multidomain particles and their agglomeration, triggering the dipolar interactions.

13.
J Nanosci Nanotechnol ; 12(3): 2652-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755104

RESUMO

In this work, the effect of nickel doping on the structural and magnetic properties of Fe3O4 nanoparticles is analysed. Ni(x)Fe(3-x)O4 nanoparticles (x = 0, 0.04, 0.06 and 0.11) were obtained by chemical co-precipitation method, starting from a mixture of FeCl2 x 4H2O and Ni(AcO)2 x 4H2O salts. The analysis of the structure and composition of the synthesized nanoparticles confirms their nanometer size (main sizes around 10 nm) and the inclusion of the Ni atoms in the characteristic spinel structure of the magnetite Fe3O4 phase. In order to characterize in detail the structure of the samples, X-ray absorption (XANES) measurements were performed on the Ni and Fe K-edges. The results indicate the oxidation of the Ni atoms to the 2+ state and the location of the Ni2+ cations in the Fe2+ octahedral sites. With respect to the magnetic properties, the samples display the characteristic superparamagnetic behaviour, with anhysteretic magnetic response at room temperature. The estimated magnetic moment confirms the partial substitution of the Fe2+ cations by Ni2+ atoms in the octahedral sites of the spinel structure.

14.
Nanotechnology ; 23(2): 025705, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22166763

RESUMO

The role of the interface in mediating interparticle magnetic interactions has been analysed in Fe50Ag50 and Fe55Ag45 granular thin films deposited by the pulsed laser deposition technique (PLD). These samples are composed of crystalline bcc Fe (2­4 nm) nanoparticles and fcc Ag (10­12 nm) nanoparticles, separated by an amorphous Fe50Ag50 interface, occupying around 20% of the sample volume, as determined by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and high resolution transmission electron microscopy (HRTEM). Interfacial magnetic coupling between Fe nanoparticles is studied by dc magnetization and x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and Ag L2,3 edges. This paper reveals that these thin films present two magnetic transitions, at low and high temperatures, which are strongly related to the magnetic state of the amorphous interface, which acts as a barrier for interparticle magnetic coupling.

15.
J Synchrotron Radiat ; 8(Pt 2): 443-5, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11512808

RESUMO

We present X-ray Magnetic Circular Dichroism experiments (XMCD) on the Fe K edge of FeZrB metallic glasses performed under tensile stress. In these compounds the application of tensile stresses produces a large increase of the Curie Temperature. The XMCD signal presents the features expected for a weak ferromagnet but a gradual enhancement of the ferromagnetism is observed as boron and zirconium concentrations increase. The main effect of the tensile stress is to increase the density of states at the Fermi level as deduced from the increment of the amplitude of the XMCD signal with the stress.

16.
J Synchrotron Radiat ; 8(Pt 2): 883-5, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11512966

RESUMO

Metastable Co(x)Cu100-x(x=5, 10, 15, 20) alloys have been annealed at increasing temperatures in order to study the evolution of the Co cluster and its relation with the magnetotransport properties. The structure was investigated by X-ray Absorption Spectroscopy on the Co K-edge as a function of composition and annealing temperature. An anomalous trend in the structural evolution has been evidenced and related to the preculiar features observed in the magnetotransport properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...